User

Agent NoCode

Mountain Lake Reflection - Cognitive Ripples and Natural Thought Patterns
LangGraph

Built with Python & LangGraph

A2A Protocol v0.3.0 Compliant Server

Built with Python and powered by LangGraph, this NoCode RAG agent enables seamless agent-to-agent communication using the standardized A2A protocol. Implemented with FastAPI and the official A2A SDK, it provides intelligent RAG capabilities, stateful multi-agent workflow orchestration, and comprehensive no-code tool integration for enterprise applications.

Uses LangGraph with a graph-based architecture for defining complex agent interactions and stateful workflows. Workflows are composed of nodes (representing processing steps) and edges (representing state transitions and message flow), enabling sophisticated multi-step reasoning, conditional logic, and human-in-the-loop patterns.

Python LangGraph A2A Protocol LangGraph Docs

API Endpoints & Documentation

Explore the A2A protocol endpoints, agent cards, and LangGraph RAG APIs.


Agent Orchestrator Dashboard

Live monitoring of all subsystems and services. Updates every 30 seconds.

Loading system status...


Quick Start: Chat with Agent

Use this curl command to send a message to the agent via the A2A protocol using JSON-RPC. The agent will process your request and return a complete response including task status, artifacts, and conversation history.

Terminal Command
curl --location 'http://localhost:5002/' \
--header 'Content-Type: application/json' \
--data '{
    "jsonrpc": "2.0",
    "method": "message/send",
    "params": {
        "configuration": {
            "blocking": true
        },
        "message": {
            "role": "user",
            "messageId": "a1b2c3d4-e5f6-7890-abcd-ef1234567890",
            "contextId": "12345678-90ab-cdef-1234-567890abcdef",
            "kind": "message",
            "parts": [
                {
                    "kind": "text",
                    "text": "Explain quantum computing in simple terms"
                }
            ]
        }
    },
    "id": 1
}'
Response:
{
    "jsonrpc": "2.0",
    "result": {
        "task": {
            "taskId": "a52b3af8-bbb3-4864-8a48-f68a9334de9e",
            "state": "completed"
        }
    },
    "id": 1
}

Agent Configuration

Configure the NoCode RAG Langraph agent with LLM, RAG database, and authentication settings.

Required Environment Variables

Configure these parameters to enable full agent functionality:

Parameter Required Default Description
Agent Configuration
AGENT_ID Required "" Unique identifier for this agent instance
AGENT_NAME Optional NoCode RAG Langraph Agent Display name for the agent
AGENT_DESCRIPTION Optional A LangGraph-based AI assistant Description of agent capabilities
LLM Configuration
LLM_ENDPOINT Required "" Azure OpenAI endpoint URL (e.g., https://your-resource.openai.azure.com/)
LLM_KEY Required "" Azure OpenAI API key for authentication
LLM_DEPLOYMENT_NAME Optional gpt-4o Azure OpenAI deployment name
LLM_VERSION Optional 2024-02-01 Azure OpenAI API version
LLM_MODEL Optional gpt-4 Azure OpenAI model name
Embedding Service Configuration
EMBEDDING_BASE_URL Optional "" Base URL for embedding service
EMBEDDING_API_KEY Optional "" API key for embedding service authentication
EMBEDDING_PROVIDER Optional azure Embedding provider (azure, openai, etc.)
Database Configuration
DB_HOST or PG_HOST Optional localhost PostgreSQL database host
DB_PORT or PG_PORT Optional 5432 PostgreSQL database port
DB_NAME Optional orchestrator PostgreSQL database name
DB_USERNAME or PG_USER Optional postgres PostgreSQL database username
DB_PASSWORD or PG_PASSWORD Optional "" PostgreSQL database password
Authentication Configuration
AUTH_ENABLED Optional false Enable/disable authentication
AUTH_AUTHORITY Optional "" Authentication authority URL (e.g., Azure AD tenant URL)
AUTH_ISSUER Optional "" JWT token issuer URL for validation
AUTH_TENANT_ID Optional "" Azure AD tenant identifier
AUTH_CLIENT_ID Optional "" Application (client) ID registered in Azure AD
AUTH_REDIRECT_URI Optional "" OAuth redirect URI for authentication flow
AUTH_LOGIN_SCOPES Optional "" Comma-separated OAuth scopes for user login
AUTH_API_SCOPES Optional "" Comma-separated OAuth scopes for API access
AUTH_VALIDATE_ISSUER Optional true Validate JWT issuer claim during token verification
AUTH_VALIDATE_AUDIENCE Optional true Validate JWT audience claim during token verification
AUTH_VALIDATE_SIGNING_KEY Optional true Validate JWT signature using signing keys
AUTH_VALIDATE_LIFETIME Optional true Validate JWT expiration and not-before claims
AUTH_LIFETIME_SKEW Optional 5 Allowed clock skew in minutes for lifetime validation
Server Configuration
PORT Optional 8080 Server port (5015 for local development)
HOST Optional 0.0.0.0 Server host address
ENVIRONMENT Optional development Application environment (development, production)
DEBUG Optional false Enable debug mode

Example Configuration

.env file
########################################
# Agent Configuration
########################################
AGENT_ID=simple-ag
AGENT_NAME=LowCodeAgent
AGENT_DESCRIPTION=A low-code AI agent for rapid application development.
AGENT_ICON_URL=
AGENT_DOCUMENTATION_URL=
AGENT_PROVIDER_ORG=EY
AGENT_PROVIDER_URL=https://ey.com

########################################
# LLM configuration
########################################
LLM_PROVIDER=azure_openai
LLM_ENDPOINT=https://your-openai-instance.openai.azure.com/
LLM_MODEL=gpt-4o
LLM_KEY=your-api-key-here
LLM_API_VERSION=2025-01-01-preview
LLM_SYSTEM_PROMPT=You are a helpful, tool-using assistant.
LLM_TEMPERATURE=0.0
LLM_MAX_TOKENS=1000

########################################
# Embeddings configuration (optional)
########################################
EMBED_PROVIDER=azure_openai
EMBED_MODEL=text-embedding-ada-002
EMBED_API_VERSION=2023-05-15

########################################
# Postgres (pgvector) configuration
########################################
PGHOST=localhost
PGPORT=5432
POSTGRES_USER=postgres
POSTGRES_PASSWORD=postgres
Platform_DB=art-context

########################################
# Logging
########################################
LOG_LEVEL=INFO

########################################
# Context Configuration
########################################
CONTEXTS="[]"

########################################
# Authentication Configuration (Optional)
########################################
AUTH_ENABLED=false
AUTH_AUTHORITY=https://login.microsoftonline.com/your-tenant-id
AUTH_ISSUER=https://sts.windows.net/your-tenant-id/
AUTH_TENANT_ID=your-tenant-id
AUTH_CLIENT_ID=your-client-id
AUTH_REDIRECT_URI=http://localhost:3000
AUTH_LOGIN_SCOPES=User.Read
AUTH_API_SCOPES=api://your-app-id/.default
AUTH_VALIDATE_ISSUER=true
AUTH_VALIDATE_AUDIENCE=false
AUTH_VALIDATE_SIGNING_KEY=false
AUTH_VALIDATE_LIFETIME=true
AUTH_LIFETIME_SKEW=300

########################################
# MCP URLs
########################################
TOOL_SERVERS='["http://localhost:5010/mcp"]'

Sync Parameters to Fabric Developer Workflow Application

Automatically sync your local environment variables to Fabric Developer Workflow Application using the make params command. This eliminates manual configuration in the Application Dashboard.

Prerequisites

  1. Install Fabric Developer Journey CLI from Null Platform:
    npm install -g @nullplatform/cli
  2. Get your API Key:
    Go to your App Dashboard from Fabric Workspace → Click user profile icon → Click "Copy personal access token"
  3. Export the API Key:
    export NP_TOKEN=<your-token>
  4. Get your App NRN (Null Resource Name):
    1. Go to your Application Dashboard
    2. Click the NRN button to copy your application's NRN
    3. You'll use this NRN when running the make params command
    # Format: organization=ID:account=ID:namespace=ID:application=ID
    # Example: organization=1234567890:account=9876543210:namespace=1122334455:application=5544332211

Run the Command

Once prerequisites are met, run this command in your terminal:

Terminal Command
# Use your NRN copied from Application Dashboard
# Option 1: Using NRN variable (recommended)
make params NRN=organization=1234567890:account=9876543210:namespace=1122334455:application=5544332211

# Option 2: Using ARGS variable
make params ARGS="--nrn organization=1234567890:account=9876543210:namespace=1122334455:application=5544332211"

# Option 3: Call script directly
./scripts/configure-parameters.sh --nrn organization=1234567890:account=9876543210:namespace=1122334455:application=5544332211
Secret Parameters
These parameters are automatically marked as secrets: LLM_KEY, EMBEDDING_API_KEY, DB_PASSWORD, PG_PASSWORD, SECURITY_SECRET_KEY, NP_TOKEN